

Clinical Pearls: How I Test

Nancy Berliner, M.D.

H. Franklin Bunn Professor of Hematology
Chief, Division of Hematology
Brigham and Women's Hospital
Professor of Medicine
Harvard Medical School

Nancy Berliner, M.D.

H. Franklin Bunn Professor of Medicine Chief, Division of Hematology, BWH

Yale Medical School Residency and Chief Residency at BWH Hematology Fellowship at BWH

Editor-in-Chief, Blood

Disclosure Information: Nancy Berliner

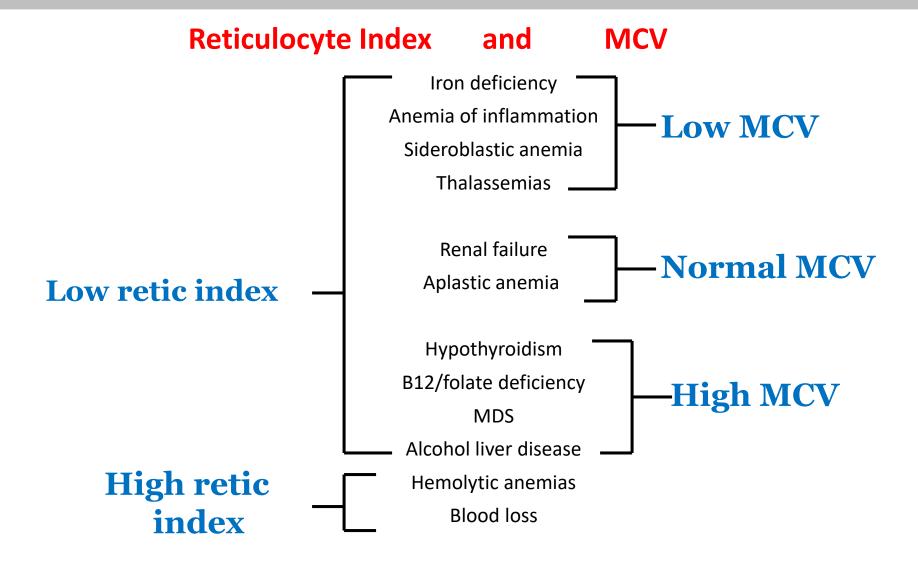
I have no financial relationships to disclose.

AND

I will **NOT** include discussion of off-label or investigational use of any products in my presentation.

Evaluation of Anemia

Reticulocyte count


Corrected Reticulocyte Count/Reticulocyte Index

Reticulocyte Index = Retic count X <u>Hematocrit</u> Normal Hct (45)

Reticulocyte Index in a normal healthy adult is between 1 and 2

Evaluation of Anemia

Evaluation of Hypoproliferative Anemia

Iron Studies: Fe/TIBC/Ferritin Erythropoietin level B12, folate CRP/ESR

- Important for interpretation of ferritin, as it is an acute phase reactant
- In true iron deficiency, one cannot raise ferritin to over about 100

Interpretation of Iron Studies

	Iron deficiency	Anemia of Inflammation	
Serum Fe	Low	Low	
TIBC	High	Low	
Transferrin saturation	Low	Low	
Ferritin	Very low	N/High	

Anemia of Inflammation

Characterized by low serum Fe/TIBC in setting of elevated ferritin Associated with a wide variety of clinical disorders

- Infections (bacterial endocarditis)
- Rheumatologic Disease (rheumatoid arthritis, SLE)
- Organ dysfunction (CHF, chronic renal failure)
- Malignancy (MDS, NHL)

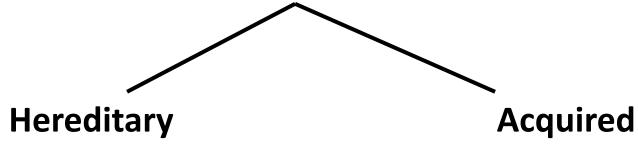
Pathophysiology

- Impaired EPO responsiveness of hematopoietic stem cell
- shortened red cell survival
- impaired iron mobilization iron-limited erythropoiesis related to overexpression of hepcidin

Erythropoietin and Anemia of the Elderly

Epo secretion and Epo responsiveness of HSCs may be altered with age

Epo levels rise with age in healthy, non-anemic individuals


- Slope of the rise greater in those without diabetes or hypertension
- Anemic individuals had a lower slope of rise
- Hypothesis: Anemia reflects failure of a normal compensatory rise in Epolevels, reflecting age-related co-morbidities

Even in the setting of a normal creatinine, EPO may help interpret anemia, especially in elderly patients

Evaluation of Anemia with Reticulocytes

Hemolytic Anemias

- 1. Defects in RBC membrane
- 2. Defects in RBC metabolism (enzymopathies)
- 3. Defects in Hemoglobin (hemoglobinopathies)

- 1. Immune HA
- 2. Non-immune HA

Autoimmune Hemolytic Anemia

	Warm AIHA	Cold AIHA	
Direct	IgG or IgG & C3	C3 only	
Coombs			
Antibody	IgG	IgM	
Etiology	1. Drugs: Methyldopa, PCN,	1. Drugs: Quinidine	
	Sulfa	2. Malignancy: NHL	
	2. Malignancy: CLL, NHL	3. Infection: Mycoplasma	
	3. Infection	4. Paroxysmal cold hemoglobinuria	
Treatment	Steroids +/- Danazol	No role for steroids	
	Rituximab	Warm pt	
	Splenectomy	Rituximab +/- fludarabine	

Leukocytosis: Differential Diagnosis

SECONDARY TO OTHER ILLNESSES

Infection

Acute: Demargination/release storage pool

Chronic: Granulomatous dx (leukoerythroblastic)

Stress

Drug-induced (steroids, β -agonists, lithium)

Chronic inflammation

Post-splenectomy

Non-hematologic malignancy

Marrow stimulation (ITP, hemolysis, CMT)

PRIMARY HEMATOLOGIC DISEASE

CML

Other MPD

Evaluation of Leukocytosis

Neutrophilia is usually reactive, indicative of a normal functioning bone marrow. Bone marrow evaluation is often unnecessary

- Repeat WBC to R/O factitious or artifactual elevation
- Evaluation for acute/chronic infection or inflammation
- •FISH for bcr-abl
- Bone marrow exam: r/o granulomatous dx, fungus

Neutropenia: Differential Diagnosis

Congenital Neutropenia

- Duffy-null associated neutrophil count (DANC)
- Familial neutropenia
- Severe congenital neutropenia
- Cyclic neutropenia
- Other rare disorders

Acquired Neutropenia

- Autoimmune neutropenia
- Drug-induced neutropenia
- Chronic idiopathic neutropenia
- Primary marrow failure syndromes (MDS, aplasia)

Evaluation of Neutropenia

For Congenital Neutropenia:

- Molecular Diagnosis for ELANE, HAX1
- Some advocate for testing for Duffy antigen negative phenotype in suspected Duffy-null associated neutrophil count (DANC, formerly benign ethnic neutropenia

Acquired Neutropenia

- Stop possible offending drugs
- Flow cytometry for clonality, LGL
- Serologic studies for ANA
- Anti-neutrophil antibodies are not recommended
- R/O MDS: NGS or bone marrow examination

Tests of the Coagulation Cascade

- PT (prothrombin time, initiate with tissue factor, phospholipid, calcium)
- PTT (partial thromboplastin time, initiate with kaolin or silica, calcium, limited in phospholipid)
- TT (thrombin time, initiate with thrombin)
- FDP (Fibrin(ogen) degradation products, non-sp.)
- D-dimers (specific fibrin degradation)
- Factor XIII Screen (clot dissolution)
- 1:1 MIXING STUDY

Causes of ↑ PT

Elevated PT:

- Less than 30% of VII (the sole "extrinsic pathway only" protein), X, V, II (common pathway) or fibrinogen
- Inhibitors of fibrin polymerization (FDPs)
- Inhibitors of II or X
- Heparin in vast excess

Most Common Causes

- Vitamin K deficiency
- Warfarin Therapy
- Liver Disease

Causes of ↑ PTT

Elevated PTT:

- Any factor level less than 30% except VII,XIII
- Inhibitors of fibrin polymerization (FDP)
- Other inhibitors (lupus anticoagulants)
- Heparin (and warfarin, to lesser degree)
- Most Common Causes
- Congenital factor deficiency
- Acquired factor Inhibitors
- DIC
- Dysfibrinogenemia
- Lupus anticoagulant

Interpretation of Mixing Studies: deficiency vs inhibitor

	PTT <u>Pt Plasma</u>	PTT <u>Nml Plasma</u>	PTT <u>1:1 Mix</u>
Factor Deficient	70 sec	30 sec	33 sec
Inhibitor	70 sec	30 sec	70 sec

Lupus Anticoagulant

Discovered in lupus patients in early 1960s Unrelated to bleeding in vast majority of cases (exception: some patients have LA plus antibody to prothrombin and long PT and PTT).

LA is *defined* by

- Prolongation of PTT
- Behavior as an inhibitor in a mixing study
- Neutralization with excess phospholipid
 In terms of pathophysiology, it is usually an antiphospholipid antibody, but not all APLA act as lupus anticoagulants
 LA is a risk factor for THROMBOSIS, not bleeding

 The PTT can't be corrected with plasma or other products, and should not be.

VTE

Risks for hypercoagulable states

- Inherited
- Acquired: more common
 - -35% US adults are obese, OR of 2.3 for VTE
 - -<10% have an inherited thrombophilia
- Mixed: all are additive or synergistic

"Provoked" vs "Unprovoked"

- Clear precipitating factor vs idiopathic or unidentified risk factor
 - -Transient vs persistent provoking factor
 - -Unprovoked = idiopathic

The "Hypercoagulable Workup"

Test for Factor V Leiden mutation

PCR for **Prothrombin G20210A** mutation

Functional assay of **Antithrombin**

Functional assay of **Protein C**

Functional assay of **Protein S**

- Free Protein S Antigen
- Total Protein S Antigen (free + bound to C4bp)

WHAT NOT to test:

Homocysteine:

FVIII

XIII polymorphisms, IX, XI,XII

APLAS work-up

Tests for Antiphospholipid Antibodies

- Lupus anticoagulant:
 - Screen: functional clotting assays
 - Sensitive PTT
 - DRVVT
 - Kaolin clotting time
 - Confirmatory: remove APLA
 - Platelet neutralization test
 - Hexagonal phase phospholipids
- Anticardiolipin and β2-glycoprotein I antibodies
 - IgG and IgM only
 - No diagnostic role for other tests

Who should be tested?

Indications of possible inherited hypercoagulable state:

Age of onset < 50 years

Recurrent thrombosis

Positive family history in 1st degree relative

Unusual location/site

However:

- Avoid indiscriminate testing in the inpatient or ER setting
- There is **no** need to know immediately—require at least 3 months anticoagulation for VTE regardless of thrombophilia status

Thrombophilia Testing Remains Controversial

Why the controversy?

- There are no data that results should affect care
- ASH Choosing Wisely Campaign 2013: "do not test in the setting of provoked VTE due to strong risks"

Misinterpretation of the significance of results

- Over treatment in the case of positive results
 - Duration of therapy determined by provoked vs unprovoked VTE
- False sense of security with negative results
 - Studies demonstrate increased VTE risk for patients with a family history of VTE despite negative results

When does it not change care?

- Provoked VTE
- Antiphospholipid syndrome
- Malignancy

